Classical and Quantum Algorithms
for Finding Cycles

Jill Cirasella
Computational Sciences Specialist
Brooklyn College Library
cirasella@brooklyn.cuny.edu

27 July 2006

Part 1: The Basics
Basics in Classical Computing
Basics in Quantum Computing

Part 2: My Research
Bag of Tricks for Quantum Cycle Algorithms
Classical and Quantum Triangle Algorithms
Classical and Quantum Quadrilateral Algorithms
Classical and Quantum Algorithms for Longer Cycles
Decision-to-Example-Finding Algorithms

What | Did

» Not: “how to make the intractable tractable”

» Rather: “how to make the tractable easier”

» Specifically: Examined classical and quantum algorithms for
finding cycles in undirected graphs.

» Clarification: “Finding cycles” = "finding and/or
determining the existence of cycles”

» Why?: Happy with decision algorithms, which can be
transformed into example-finding algorithms.

» Note: Not comprehensive. Stuck to the most important,
elegant, efficient.

Basic Definitions

v

A graph G is a structure (V, E), where V is a finite set of

vertices and E is a finite set of edges. We denote |V| by n

and |E| by m.

» In undirected graphs, edges are unordered pairs of distinct
vertices (i.e., no direction, no self-loops).

» Two vertices are adjacent if they are connected by an edge.

» A sequence of k + 1 adjacent vertices is a path of length k.

» A path is a cycle if the first and last vertices are the same and
all other vertices are distinct.

Representations of Graphs

» The adjacency matrix of G is an n x n matrix M such that
M(u,v) =1 iff (u,v) € E, and M(u, v) = 0 otherwise.

» Determining existence of an edge takes constant time.
» Storing M requires O(n?) space.

» The adjacency list representation of G is an array A of size
n. Each element of A represents a vertex u € V' and points to
a linked list of vertices adjacent to u.
» Determining existence of an edge involves searching an

unordered list of vertices and can require O(n) time.
» Storing A requires O(n + m) space.

Search

Common feature of graph algorithms:
They involve a search for something.

» Unordered search problem: Let N = 2" for some positive

integer n. Given an arbitrary bit string x = (x0, X1, .., Xn_1),
we want to find an 7 such that x; = 1 or to learn that there is
no such /.

» When x; = 1, then x; is called a solution.

Search Algorithms

» Classical: No choice but to examine each element. No
matter what order they're examined in, the process requires
O(N) queries.

» Quantum: Grover's algorithm, coming up soon. ..

Basic Quantum Concepts

Classical Computing =
Classical States 4+ Transitions Between Them

Similarly:

Quantum Computing =
Quantum States + Transitions Between Them

Qubits

» Quantum states consist of one or more quantum bits
(qubits), each of which can be |0}, |1), or a superposition of
the two.

» The state of a qubit is defined by:
apl0) + aq]1)
where ag and ay are complex amplitudes. When both ag and
a1y are nonzero, the qubit is in a superposition.

» Observation jostles a qubit out of superposition and projects
it onto either |0) or |1).

» The probability of observing |0) is |ag|2, and the probability of
observing |1) is |az 2.

> Always the case that |ap|? + |az]? = 1.

Quantum States

» An n-qubit quantum state |¢) is written:
040’0) + CM1|1> + -+ agn_1\2” — 1>

where ag, a1, ..., an_1 are complex amplitudes and
|0}, |1),...,]|2" — 1) are quantum basis states. Observation
projects |¢) onto state |i) with probability |a;|?.

> Always the case that |ag|? + |a1|? + -+ + |agn_1|2 = 1.

» Quantum states can be expressed as vectors, e.g.:

Qo
aq

Quon_1

Quantum Operations

» Quantum operations, like classical operations, can be
expressed as matrices. Of course, only some matrices define
quantum operations.

» A matrix U defines a realizable quantum operation iff it is
unitary (that is, iff it is a square matrix whose inverse U~!
equals its conjugate transpose U*).

» Calculate effect of a quantum operation by multiplying the
operation’s matrix U by the state’s vector |¢) : U|p) = |¢').

A Simple Quantum Gate

A simple quantum gate is the “quantum coin flip":

1 1 -1
o= (1 1)
QCF|0) = %(|O> —|1)) — 50/50 chance.
QCF|1) = %(|O> + 1)) — 50/50 chance.

Uniform superposition — true randomness.

v

v

v

v

v

If we don't observe but again apply QCF: Applying QCF to
QCF|1) yields |0), and applying QCF to QCF|0) yields —|1).
Two applications of QCF effect negation.

QCF is sometimes called vVNOT.

v

v

Hadamard Transform

» Hadamard transform is very similar to QCF. Rather than
V' NOT, can be thought of as +/Identity.

» Like QCF, Hadamard transform puts a qubit into uniform

superposition:
1 1 1
H=0s(1 o)

» H|0) = %(\0) + 1)) — 50/50 chance.

> H|1) = %(\O) —|1)) — 50/50 chance.

» Applying H to H|0) yields |0), and H to H|1) yields |1).
» Two applications of H effect identity function.

» H (and other quantum gates for single qubits) can be
simultaneously applied to multiple qubits.

Time Complexity vs. Query Complexity

» Time complexity: # of operations an algorithm makes.

» Query complexity: # of times an algorithm accesses its
worst-case input.

» Query complexity says less about an algorithm’s efficiency
than time complexity does.

» But, when we don't know the lower bound on a problem’s

classical time complexity, we sometimes do know the lower
bound on its classical query complexity.

» Therefore, we can often learn more by comparing quantum
and classical query complexities.

Milestones in Quantum Computing

» R. Feynman, 1981: Suggested that a quantum computer
could do what no classical computer can: simulate quantum
mechanics.

» P. Benioff, 1982: Showed reversible unitarity (i.e., quantum
mechanics) to be at least as powerful as classical computation.

» D. Deutsch, 1985: Described a quantum Turing machine.

» D. Deutsch and R. Jozsa, 1992: First fully described
quantum algorithm. Solved an oracle problem in p-time.

» P. Shor, 1994: Quantum algorithm for factoring numbers in
p-time. (Good thing for quantum cryptography!)

» L. Grover, 1996: Quantum algorithm for searching an
unordered list in O(v/N) steps. First quantum algorithm for a
“total” problem (i.e., no “promise” about the input).

What | Did, Again

Looked at classical and quantum algorithms for
finding — or determining the existence of —
triangles, quadrilaterals, and longer cycles in graphs.

Bag of Tricks

» Three quantum algorithms become our “bag of tricks.”
We combined and embedded them with each other and with
classical operations to create the quantum cycle algorithms
ahead.

» Sometimes, a quantum cycle algorithm is made by inserting
one or more of these tricks in place of steps in a classical cycle
algorithm.

» Other times, these tricks are used to make totally new
algorithms that are not derived from classical algorithms.

Trick #1: Grover's Search Algorithm

» Grover’'s Search Algorithm: Solves the unordered search
problem. Uses the Grover iterate, which involves a query
(flips the phase of the solution state) and the diffusion
transform (achieves “inversion about average”):

1. Begin in the n-qubit state |0).

2. Apply the Hadamard transform H to every qubit in |6>

3. Apply the Grover iterate O(v/N) times.

4. Measure the resulting superposition, collapsing it into a single
state.

Queries: O(V/'N).

See handout!

Trick #2: Amplitude Amplification

» Amplitude Amplification: Generalization of Grover's. Finds
an x such x(x) = 1, where x is a Boolean function.

1.
2.

3.
4.

Begin in the n-qubit state |0).

Put |0) in superposition. (Let a be the probability of observing
“good” state at this point.)

Apply the Q iterate O(1/+/a) times.

Measure the resulting superposition, collapsing it into a single
state.

Queries: O(1//a).

Can replace “for” loops. Instead of stepping through N
elements, each with 1/N chance of being “good,” perform
O(V/'N) iterations of amplitude amplification.

Trick #3: Ambainis’s Algorithm for Element Distinctness

» Ambainis’s Algorithm for Element Distinctness:
Determines whether a set of N elements contains two that
equal each other. Examines the set using a quantum walk,
which steps through the set's subsets of certain sizes. Each
subset is similar to its predecessor, differing by just one
element. Therefore, computation on each subset is similar to

computation on its predecessor. Conserves queries.
Queries: O(N?/3).

» Generalizes to k-element distinctness problem, which asks

whether there are k elements that equal each other.
Queries: O(Nk/(k+1)),

Classical Triangle Algorithms

» Classical Triangle Algorithm #1: Brute force with an
adjacency matrix. Time: O(n®). Queries: O(n?).

» Classical Triangle Algorithm #2: Brute force with an
adjacency list. Time: O(n®). Queries: O(n + m).

» Classical Triangle Algorithm #3:

1. Compute M? using Boolean matrix multiplication.
2. Compute M2 A M.
3. If M2 A M contains a 1, then G contains a A.

Time: O(n®), where « is the exponent of Boolean matrix
multiplication algorithm. Queries: O(n?).

Quantum Triangle Algorithms #1 and #2

» Quantum Triangle Algorithm #1: Brute force with
Grover's:

1. Perform Grover's to find a A among the (3) triples of vertices.

Queries: O(n*/?).

» Quantum Triangle Algorithm #2: Uses both Grover's and
amplitude amplification:
1. Perform Grover's to find an edge (u, v) among the (g)
potential edges.
2. Perform Grover's to find a vertex w such that u, v, w is a A.
3. Perform amplitude amplification on steps 1 and 2 (to find
desired edge (u, v)).

Queries: O(n + /nm) — better than O(n%/?) if G is sparse.

Quantum Triangle Algorithm #3

» Quantum Triangle Algorithm #3: Adapts classical
algorithm that uses brute force on adjacency list. Uses
Grover's and two layers of amplitude amplification.

1.
2. Query all elements in A[u] and make list T of these neighbors.
3.

4. Perform Grover's to find vertex w € A[v] that is also in T.

5.
6.

Choose random vertex u € V.
Choose random vertex v € T.
If such a w is found, u,v,w is a A.

Perform ampl. ampl. on steps 3—4 (to find a desired v).
Perform ampl. ampl. on steps 1-5 (to find a desired u).

Queries: O(n/?).

Quantum Triangle Algorithms #4 and #5

Quickly. . .

» Quantum Triangle Algorithm #4: Uses Grover's and lots
of combinatorial tricks. Complicated.
Queries: O(n'%/7).

» Quantum Triangle Algorithm #5:

Shows that triangle problem reduces to “graph collision” —
which reduces to “collision” —

which reduces to “unique collision” —

which can be solved by the “Generic Algorithm” —

which is a generalization of Ambainis’'s Algorithm for element
distinctness.

Queries: O(n-3) — later improved to O(n'3).

vV vy vy VvYy

Classical Quadrilateral Algorithms

» Obvious Adaptations: Several modifications of A
algorithms, none very interesting. However, there is a
noteworthy modification of the matrix multiplication
algorithm, coming up soon...

» Classical Quadrilateral Algorithm #1: Takes in adjacency
list and cleverly creates a matrix:
1. Create an n x n matrix C and initialize all entries to 0.
2. For each vertex u € V,
3. For each pair of vertices v, w € A[u] such that v < w,
4 If C(v,w) =0, then C(v,w) «— u.
Else, u,v, C(v,w),w is a O.

Time: O(n?). Queries: O(n+ m).

Quantum Quadrilateral Algorithm #1

» Quantum Quadrilateral Algorithm #1: Takes in adjacency
matrix and uses Grover's and amplitude amplification:

1. Choose two random vertices u,v € V.

2. Perform Grover's search to find two vertices u’, v/ € V such
that u,v’,v,v' is a 0.

3. Perform amplitude amplification on steps 1-2 (to find good u
and v).

Queries: O(n/?).

Quantum Quadrilateral Algorithm #2

» Quantum Quadrilateral Algorithm #2: Takes in adjacency
list and uses Grover's, amplitude amplification, and
Ambainis's:

1.

2.

Choose a random vertex u € V, which has k neighbors

vi, ..., vk with adjacency lists A[wv1], ..., A[v].

Perform Grover's search on vi, ..., v, to find up to 2n*~¢ +1
neighbors v, such that |A[v.]| > n° (c to be determined later).
We say that these v; have “long" lists.

If there are more than 2n'~¢ neighbors with long lists, then
graph G must contain a quadrilateral. Truncate each long list
to length n®, and concatenate these truncated lists into a new
list L. Perform Ambainis’s on L to find a vertex w # u that is
adjacent to at least two neighbors v;.

Quantum Quadrilateral Algorithm #2

» Quantum Quadrilateral Algorithm #2: Continued:

4. Otherwise, pad all short lists with unique dummy elements to
bring their lengths up to n°. Concatenate all lists into a new
list L. Perform Ambainis’'s on L to find a vertex w € V that is
adjacent to at least two vertices that are adjacent to v.

5. Perform amplitude amplification on steps 1-4.

Queries: O(n'%/1%).

Classical Longer-Cycle Algorithms

For all longer-cycle algorithms,
assume that k is fixed and not inputted.

» Obvious Adaptations: Obvious k-cycle algorithms all have
time complexities around O(n¥).

» Slight Improvements: One finds k-cycles in O(n*/?) time.
Another finds k-cycles in O((k — 1)! - nm) = O(nm) time.

Classical Even/Odd Cycle Algorithm #3

» Classical Even/Odd Cycle Algorithm #3: Modification of
matrix-multiplication triangle algorithm:
1. Repeat until a k-cycle is found or until all acyclic orientations

have been tried:
2. Choose a random ordering of the vertices in V.
3. Create an adjacency matrix M for the acyclic orientation G
corresponding to the ordering.
4. Compute M1 A M.

Time: O(k!logk - n®) = O(n®). Queries: O(n?).

Classical Even Cycle Algorithm #4

» Classical Even Cycle Algorithm #4: Takes in adjacency list
and performs a series of breadth-first searches:
1. For each vertex s € V,
2. Do a BFS, stopping after a certain stage or after a certain
number of edges have been found.
3. Check whether subgraph created by BFS has a 2k-cycle.
(How to check depends on why BFS stopped.)

Time: O((2k)!- n?) = O(n?). Queries: O(n?).

» Quantum Adaptation: Replace the “for” loop with
amplitude amplification. Though tempting, cannot replace the
BFS with Grover's, as BFS is used not to search but to
generate a subgraph.

Queries: O(n*/?).

Generalization of Ambainis’s Algorithm

» Generalization of Ambainis’s Algorithm: Childs and
Eisenberg showed that Ambainis's O(n*/(x*1)) algorithm for
k-element distinctness can be repurposed to find a subset of
size k that satisfies any given property P.

A k-cycle is a subset of the ('2’) possible edges in a graph G,
so the query complexity of finding a k-cycle is:

k/(k+1)
n — O 2K/ (k+1) n2).
0] (()) O() < O(n?)

2

Generalization of O(n'?) Triangle Algorithm

» Generalization of O(n'3) Triangle Algorithm: Magniez,
Santha, and Szegedy showed that their O(n*3) triangle
algorithm generalizes to a O(n?~(2/k)) algorithm for finding a
copy of a specified k-vertex subgraph. The specified subgraph
could of course be a k-cycle.

This is the best query complexity yet
for arbitrary-length cycles.

Decision-to-Example-Finding Algorithms

» As mentioned, decision algorithms are always sufficient. If
we want an example of a cycle in addition to the assertion
that one exists, we can transform the decision algorithm into
an example-finding algorithm.

» Embed the decision algorithm in a recursion. Just
maintain a list L of “active” vertices. At each level of
recursion, randomly reorder L, split it in half, and recur.
(Need to repeat each level several times.)

» If it uses an adjacency matrix, example-finding algorithm has
same query complexity as decision algorithm. (If it uses an
adjacency list, the “upkeep” of the list dominates the query
complexity of the decision algorithm.)

Conclusion

» In many ways the generalization of Ambainis’s algorithm and
the generalization of the O(n'3) triangle algorithm are the
ultimate in cycle algorithms.

» My project, by surveying the many classical and quantum
cycle algorithms that came before, allows us to appreciate the
new findings with a sense of history, a sense of drama, and a
sense of the cumulative nature of algorithmic research.

	Outline
	Part 1: The Basics
	Basics in Classical Computing
	Basics in Quantum Computing

	Part 2: My Research
	Bag of Tricks for Quantum Cycle Algorithms
	Classical and Quantum Triangle Algorithms
	Classical and Quantum Quadrilateral Algorithms
	Classical and Quantum Algorithms for Longer Cycles
	Decision-to-Example-Finding Algorithms

